Complex I and complex III inhibition specifically increase cytosolic hydrogen peroxide levels without inducing oxidative stress in HEK293 cells
نویسندگان
چکیده
Inhibitor studies with isolated mitochondria demonstrated that complex I (CI) and III (CIII) of the electron transport chain (ETC) can act as relevant sources of mitochondrial reactive oxygen species (ROS). Here we studied ROS generation and oxidative stress induction during chronic (24h) inhibition of CI and CIII using rotenone (ROT) and antimycin A (AA), respectively, in intact HEK293 cells. Both inhibitors stimulated oxidation of the ROS sensor hydroethidine (HEt) and increased mitochondrial NAD(P)H levels without major effects on cell viability. Integrated analysis of cells stably expressing cytosolic- or mitochondria-targeted variants of the reporter molecules HyPer (H2O2-sensitive and pH-sensitive) and SypHer (H2O2-insensitive and pH-sensitive), revealed that CI- and CIII inhibition increased cytosolic but not mitochondrial H2O2 levels. Total and mitochondria-specific lipid peroxidation was not increased in the inhibited cells as reported by the C11-BODIPY(581/591) and MitoPerOx biosensors. Also expression of the superoxide-detoxifying enzymes CuZnSOD (cytosolic) and MnSOD (mitochondrial) was not affected. Oxyblot analysis revealed that protein carbonylation was not stimulated by CI and CIII inhibition. Our findings suggest that chronic inhibition of CI and CIII: (i) increases the levels of HEt-oxidizing ROS and (ii) specifically elevates cytosolic but not mitochondrial H2O2 levels, (iii) does not induce oxidative stress or substantial cell death. We conclude that the increased ROS levels are below the stress-inducing level and might play a role in redox signaling.
منابع مشابه
Inhibition of Mitochondrial Complex I Leads to Decreased Motility and Membrane Integrity Related to Increased Hydrogen Peroxide and Reduced ATP Production, while the Inhibition of Glycolysis Has Less Impact on Sperm Motility
Mitochondria have been proposed as the major source of reactive oxygen species in somatic cells and human spermatozoa. However, no data regarding the role of mitochondrial ROS production in stallion spermatozoa are available. To shed light on the role of the mitochondrial electron transport chain in the origin of oxidative stress in stallion spermatozoa, specific inhibitors of complex I (roteno...
متن کاملComplex II of the mitochondrial respiratory chain is the key mediator of divalent manganese-induced hydrogen peroxide production in microglia.
Exposure to excessive levels of manganese (Mn) is associated with the development of movement disorders, with symptoms overlapping with Parkinson's disease. Oxidative damage has been implicated as a key contributor to Mn-induced neurotoxicity. We have recently reported that divalent Mn (Mn(2+)) stimulates brain microglia to produce and release hydrogen peroxide (H2O2), and microglial-free radic...
متن کاملTrahalose Activates Autophagy and Prevents Hydrogen Peroxide-Induced Apoptosis in the Bone Marrow Stromal Cells
Bone marrow stromal stem cells (BMSCs) play a significant role in cell therapy. These cells quickly die after transplantation to the affected area due to oxidative stress. The natural disaccharide, trehalose which can be known as autophagy inducer. The present study aimed to investigate the role of trehalose in preventing BMSCs from oxidative stress caused by H2O2. BMSCs were isolated from the ...
متن کاملProline dehydrogenase is essential for proline protection against hydrogen peroxide-induced cell death.
Proline metabolism has an underlying role in apoptotic signaling that influences tumorigenesis. Proline is oxidized to glutamate in the mitochondria, with the rate-limiting step catalyzed by proline dehydrogenase (PRODH). PRODH expression is inducible by p53, leading to increased proline oxidation, reactive oxygen species formation, and induction of apoptosis. Paradoxical to its role in apoptos...
متن کاملTrahalose Activates Autophagy and Prevents Hydrogen Peroxide-Induced Apoptosis in the Bone Marrow Stromal Cells
Bone marrow stromal stem cells (BMSCs) play a significant role in cell therapy. These cells quickly die after transplantation to the affected area due to oxidative stress. The natural disaccharide, trehalose which can be known as autophagy inducer. The present study aimed to investigate the role of trehalose in preventing BMSCs from oxidative stress caused by H2O2. BMSCs were isolated from the ...
متن کامل